Calculez un cadre englobant pour sélectionner un sous-ensemble de lignes dans la clause WHERE de votre requête SQL, de sorte que vous n'exécutez le calcul de distance coûteux que sur ce sous-ensemble de lignes plutôt que sur l'ensemble des 200 000 enregistrements de votre table. La méthode est décrite dans cet article sur Movable Type (avec des exemples de code PHP). Ensuite, vous pouvez inclure le calcul Haversine dans votre requête par rapport à ce sous-ensemble pour calculer les distances réelles et prendre en compte la clause HAVING à ce point.
C'est la boîte englobante qui améliore vos performances, car cela signifie que vous n'effectuez le calcul coûteux de la distance que sur un petit sous-ensemble de vos données. Il s'agit en fait de la même méthode que Patrick a suggérée, mais le lien Movable Type contient des explications détaillées sur la méthode, ainsi que du code PHP que vous pouvez utiliser pour créer le cadre de délimitation et votre requête SQL.
MODIFIER
Si vous pensez que la haversine n'est pas assez précise, alors il y a aussi la formule de Vincenty.
// Vincenty formula to calculate great circle distance between 2 locations expressed as Lat/Long in KM
function VincentyDistance($lat1,$lat2,$lon1,$lon2){
$a = 6378137 - 21 * sin($lat1);
$b = 6356752.3142;
$f = 1/298.257223563;
$p1_lat = $lat1/57.29577951;
$p2_lat = $lat2/57.29577951;
$p1_lon = $lon1/57.29577951;
$p2_lon = $lon2/57.29577951;
$L = $p2_lon - $p1_lon;
$U1 = atan((1-$f) * tan($p1_lat));
$U2 = atan((1-$f) * tan($p2_lat));
$sinU1 = sin($U1);
$cosU1 = cos($U1);
$sinU2 = sin($U2);
$cosU2 = cos($U2);
$lambda = $L;
$lambdaP = 2*M_PI;
$iterLimit = 20;
while(abs($lambda-$lambdaP) > 1e-12 && $iterLimit>0) {
$sinLambda = sin($lambda);
$cosLambda = cos($lambda);
$sinSigma = sqrt(($cosU2*$sinLambda) * ($cosU2*$sinLambda) + ($cosU1*$sinU2-$sinU1*$cosU2*$cosLambda) * ($cosU1*$sinU2-$sinU1*$cosU2*$cosLambda));
//if ($sinSigma==0){return 0;} // co-incident points
$cosSigma = $sinU1*$sinU2 + $cosU1*$cosU2*$cosLambda;
$sigma = atan2($sinSigma, $cosSigma);
$alpha = asin($cosU1 * $cosU2 * $sinLambda / $sinSigma);
$cosSqAlpha = cos($alpha) * cos($alpha);
$cos2SigmaM = $cosSigma - 2*$sinU1*$sinU2/$cosSqAlpha;
$C = $f/16*$cosSqAlpha*(4+$f*(4-3*$cosSqAlpha));
$lambdaP = $lambda;
$lambda = $L + (1-$C) * $f * sin($alpha) * ($sigma + $C*$sinSigma*($cos2SigmaM+$C*$cosSigma*(-1+2*$cos2SigmaM*$cos2SigmaM)));
}
$uSq = $cosSqAlpha*($a*$a-$b*$b)/($b*$b);
$A = 1 + $uSq/16384*(4096+$uSq*(-768+$uSq*(320-175*$uSq)));
$B = $uSq/1024 * (256+$uSq*(-128+$uSq*(74-47*$uSq)));
$deltaSigma = $B*$sinSigma*($cos2SigmaM+$B/4*($cosSigma*(-1+2*$cos2SigmaM*$cos2SigmaM)- $B/6*$cos2SigmaM*(-3+4*$sinSigma*$sinSigma)*(-3+4*$cos2SigmaM*$cos2SigmaM)));
$s = $b*$A*($sigma-$deltaSigma);
return $s/1000;
}
echo VincentyDistance($lat1,$lat2,$lon1,$lon2);