Si vous faisiez cela dans une base de données relationnelle, vous ne compareriez pas les visites ligne par ligne, mais vous utiliseriez plutôt une requête d'agrégation pour trouver des visites répétées (en utilisant SELECT ... GROUP BY) donc vous devriez le faire de la même manière dans MongoDB.
Vous devez d'abord regrouper les visites par client, par magasin et par jour :
group1 = { "$group" : {
"_id" : {
"c" : "$clientId",
"l" : "$location",
"day" : {
"y" : {
"$year" : "$tov"
},
"m" : {
"$month" : "$tov"
},
"d" : {
"$dayOfMonth" : "$tov"
}
}
},
"visits" : {
"$sum" : 1
}
}
};
MODIFIER puisque vous ne voulez que répéter les JOURS suivants, vous regrouperez par client, par magasin et comptez le nombre de JOURS différents qu'il y a eu pour les visites de ce client dans ce magasin :
group2 = {"$group" :
{"_id" : {
"c" : "$_id.c",
"s" : "$_id.l"
},
"totalDays" : {
"$sum" : 1
}
} };
Ensuite, vous souhaitez uniquement inclure les enregistrements ci-dessus où il y a eu plus d'une visite du même client dans le même magasin sur plusieurs jours :
match = { "$match" : { "totalDays" : { "$gt" : 1 } } };
Voici un exemple d'ensemble de données et le résultat de ces agrégations à l'aide des opérations de pipeline ci-dessus :
> db.visits.find({},{_id:0,purchases:0}).sort({location:1, clientId:1, tov:1})
{ "clientId" : 1, "location" : "l1", "tov" : ISODate("2013-01-01T20:00:00Z") }
{ "clientId" : 1, "location" : "l1", "tov" : ISODate("2013-01-01T21:00:00Z") }
{ "clientId" : 1, "location" : "l1", "tov" : ISODate("2013-01-03T20:00:00Z") }
{ "clientId" : 2, "location" : "l1", "tov" : ISODate("2013-01-01T21:00:00Z") }
{ "clientId" : 3, "location" : "l1", "tov" : ISODate("2013-01-01T21:00:00Z") }
{ "clientId" : 3, "location" : "l1", "tov" : ISODate("2013-01-02T21:00:00Z") }
{ "clientId" : 1, "location" : "l2", "tov" : ISODate("2013-01-01T23:00:00Z") }
{ "clientId" : 3, "location" : "l2", "tov" : ISODate("2013-01-02T21:00:00Z") }
{ "clientId" : 3, "location" : "l2", "tov" : ISODate("2013-01-02T21:00:00Z") }
{ "clientId" : 1, "location" : "l3", "tov" : ISODate("2013-01-03T20:00:00Z") }
{ "clientId" : 2, "location" : "l3", "tov" : ISODate("2013-01-04T20:00:00Z") }
{ "clientId" : 4, "location" : "l3", "tov" : ISODate("2013-01-04T20:00:00Z") }
{ "clientId" : 4, "location" : "l3", "tov" : ISODate("2013-01-04T21:00:00Z") }
{ "clientId" : 4, "location" : "l3", "tov" : ISODate("2013-01-04T22:00:00Z") }
> db.visits.aggregate(group1, group2, match)
{
"result" : [
{
"_id" : {
"c" : 3,
"s" : "l1"
},
"totalDays" : 2
},
{
"_id" : {
"c" : 1,
"s" : "l1"
},
"totalDays" : 2
}
],
"ok" : 1
}